

Recent and Future ID Developments at the ESRF

P. Elleaume,
On behalf of the ID & Vacuum Group

Continuous ID Refurbishment

Segments	Туре	Length [m]	Min Gap [mm]	Material
6	In-vacuum Undulators	~ 2	5-6	Sm ₂ Co ₁₇
13	Undulators & 3T Wiggler	~ 1.6	11	NdFeB
38	Undulators	~ 1.6	16	NdFeB
8	Wigglers	~ 1.6	20-25	NdFeB
65	Total			

A number of exotic IDs: Helical, Apple II, Quasiperiodic,....

More details @: http://www.esrf.fr/machine/groups/insertion_devices/lds/installed_IDs.html

8 mm Aperture ID chambers

Welded Stainless Steel
Aperture 8 mm, Length 5 m
50 micr. Electro-Depos. Copper
1 micr. NEG Coating
5 installed in Jan 2003

Extruded Stainless Steel
Aperture 8 mm, Length 5 m
1 micr. NEG Coating
1 Installed Jan 2003

Coating of ID Vacuum Chambers with Non Evaporable Getter (NEG) material

- Technology developed at CERN in the Benvenutti Group
- Magnetron type Sputtering of Titanium, Zirconium and Vanadium to a thickness of $\sim 1 \ \mu m$.
- Following installation in the ring, the NEG is activated by baking the vessel at 180° C for ~ 4 hours.
- Results have shown a considerable shortening of the vacuum conditioning time seen by:
 - vacuum gauges
 - electron beam lifetime
 - residual bremsstrahlung measured in the beamline .
- Following the fresh installation of a 8 mm aperture 5 m long NEG coated chamber, the lifetime reached ~ 30 hours within 10 minutes of operation at 200 mA independently of the material of the chamber (stainless steel or aluminium).

NEG Coating Facility

Chamber cross-section

Twisted wire made of: Titanium, Zirconium and Vanadium

Brilliance in 2003

Beamline Front-End Upgrade

- High brilliance of tunable undulator radiation => High power density.
- A new design of beamline front-end has been produced, optimized for undulator radiation:
 - Power : 20 kW
 - Power Density: 400 kW/mr2, equiv. 2kW/mm² at normal incidence
- Can accommodate an undulator such that:
 - -L = 5 m @ gap=11 mm and Current = 300 mA current
 - L = 4 m @ gap=5.5 mm and Current = 200 mA current
- Gradually replacing existing front-ends. Presently in operation on 13 beamlines.

High Power Front-End Shutter

Vacuum Insulation of High Power Front-End

A single 0.3 mm CVD diamond window replaces the 2 x 1 mm Graphite + 0.5 mm Beryllium window

- Leak tight
- Handle higher power density
- More transparent to X-ray
- Preserves spatial coherence

P. Elleaume, Three-Way Meeting, June 2003, APS

Revolver Undulators

Typical Revolver Undulator:

- K=2.2, continuously tunable period ~ 32 mm @ 11 mm
- K=1-1.5 high brilliance but limited tunability :

period ~ 25-20 mm @ 11 mm

In-vacuum Undulators

Magnetic Field Measurements

- On-axis field int. vs gap
- Horizontal
 Vertical

 U23 ID22

 -8

 5 10 15 20 25 30

 Gap [mm]
- Gap 6 mm

 Hor.

 Vert.

 Gap 30

 Horizontal Position [mm]
- Integrated multipoles are corrected by standard techniques.
- •Low residual field integrals vs. gap confirmed by measurement on the ring. No abnormal tune shift from field errors.

Status of In-vacuum Undulators

SS	Period [mm]	L [m]	Туре	Min. Gap [mm]	Rms Phase Error [deg] @ 6 mm	Field Int. vs Gap [Gcm]	Status
ID11	23	1.6	Hybrid	5	?	70	Jan 99
ID22	23	2	PPM	6	1.9	26	July 01
ID9	17	2	PPM	6	< 5	<15	July 01
ID29	21	2	PPM	6	2.3	<15	Dec 02
ID13	18	2	PPM	6	<5	<15	July 02
ID11	22	2	Hybrid	6	< 2	<15	Dec 2003
ID30	23	2	PPM	6	2.1	<15	Dec 2003
ID30	23	2	PPM	6	< 2	<15	Dec 2003

Magnet Material: Sm₂Co₁₇

- Baked at 120°C for 2 days

- No demagnetization so far (ID11 \sim 4 years @ 5 < g < 7 mm)

Copper-Nickel Sheet

Copper:

Conduct the return current and avoid resistive wall instability

Nickel:

To ensure flatness through the sticking to the magnet and pole under magnetic force

Damaged Cu-Ni sheet & Remedy

Ext.

†

Int.

Improve longitudinal stretching

Cu/Ni thickness increased : 60/25 -> 60/50 micr.

No problem since then

Effect on the beam for ID9, ID13, ID22, ID29

- Field integrals < 20 Gcm for all gap settings (except ID11) => No correction coils.
- No measurable perturbation in multi-bunch, 16 bunch, hybrid user operation (lifetime, orbit,..)
- Some small impedance or tune shift effects observed with all invacuum undulators closed in single bunch (preliminary).

Recent Achievement of Superconducting Undulators

Why Superconducting Undulators?

Impact on Brilliance

Flux through a pinhole

Workshop on Superconducting Insertion Devices

ESRF, 30th June - 1st July, 2003

Review the recent development in superconducting technology:

- Wigglers & Undulators
- Engineering
 - Magnetic
 - Mechanical
 - Cryogenic
- Magnetic Field Measurement
- Beam Dynamics Issues